Isichazi linani elihambelana nomatriki wesikwere. Eli nani lifunyanwa xa kusenziwa imisebenzi ethile kunye nezinto ezenza imatriki.

Sibonisa ukumiselwa kwematriki A ngo-D. A. Singabonisa ukumiselwa ngemivalo emibini phakathi kwezinto zematriki.

Isalathiso semixholo

## Izinto zokuqala zoku-odola

Isigqibo seMatriki ye-1 iyafana nento ye-matrix uqobo, njengoko inomqolo omnye kunye nekholamu enye.

Imizekelo:

x X = | 8 | = 8
det Y = | -5 | = 5

## Ukumiselwa komyalelo wesibini

Imatriki iMatriki ye-odolo 2 okanye 2 × 2, zezo zinemigca emibini kunye neekholamu ezimbini.

Ukuchazwa kwematrix ebalwayo kubalwa ngokuphindaphinda amaxabiso kwi-diagonals, eyona iphambili kunye neyesibini.

Emva koko, uthabathe iziphumo ezifunyenwe kolu phindo.

Imizekelo:

3 * 2-7 * 5 = 6 - 35 = -29

3 * 4 - 8 * 1 = 12 - 8 = 4

## Indawo yesithathu yokumisela

Imatriki ze-3 okanye 3 × 3 matrix, zezo zinemigca emithathu kunye neekholamu ezintathu:

Ukubala ukumisela olu hlobo lwematrix, sisebenzisa i Umgaqo weSarrus, equka ukuphinda iikholamu ezimbini zokuqala emva nje kweyesithathu:

Emva koko, silandela la manyathelo alandelayo:

1) Sibala ukuphindaphinda ngokudibanisa. Ukulungiselela oko, sizoba iintolo ezi-diagonal eziququzelela ukubala.

Iintolo zokuqala zitsaliwe ukusuka ekhohlo ukuya ekunene kwaye ziyahambelana engundoqo ediagonal:

1 * 5 * 8 = 40
2 * 6 * 2 = 24
3 * 2 * 5 = 30

2) Sibala ukuphinda-phinda kwelinye icala le diagonal. Ke ngoko, sizoba iintolo ezintsha.

Ngoku iintolo zitsaliwe ukusuka ekunene ukuya ekhohlo kwaye ziyahambelana idiagonal yesibini:

2 * 2 * 8 = 32
1 * 6 * 5 = 30
3 * 5 * 2 = 30

3) Sidibanisa nganye kuzo:

40 + 24 + 30 = 94
32 + 30 + 30 = 92

4) Sikhupha nganye yezi ziphumo:

94 - 92 = 2

Funda imatriki kunye nezichazi kwaye, ukuqonda indlela yokubala izikhombisi ze-matrix zokulingana ngokulandelelana okanye inkulu kune 4, funda ithiyori kaLaplace.

## Ukuzivocavoca

1. (UNITAU) Ixabiso lesigqibo (umfanekiso ongezantsi) njengemveliso yezinto ezi-3 zezi:

a) abc.
b) a (b + c) c.
c) (a-b) (b-c) (c) a (a-b) (b-c).
d) (a + c) (a-b) c.
e) (a + b) (b + c) (a + c).

2. (UEL) Isiphumo sokuchongwa apha ngezantsi silingana no-zero (umfanekiso ongezantsi)

a) nokuba leliphi na ixabiso lokwenyani lika a kunye b b
b) ukuba kwaye kuphela ukuba a = b
c) ukuba kwaye kuphela ukuba a = - b
d) ukuba kwaye kuphela ukuba = 0
e) ukuba kwaye kuphela ukuba a = b = 1

3. (UEL-PR) Isichazi esiboniswe kulo mzobo ulandelayo (umfanekiso ongezantsi) uhlala ulungile

a) x> 0
b) x> 1
c) x <1
d) x <3
e) x> -3