Mhlawumbi uye wazibuza ukuba zithini Iimpawu zeMathematika?, kwaye zisetyenziswa njani. Ukuba kunjalo, uze endaweni elungileyo, kuba apha siza kuchaza yonke into ekufuneka uyazi ukuze wazi ukuba uza kuyisebenzisa nini le mifuziselo ibalulekileyo. Dibana nathi!

Iimpawu zeMathematika

 

 

Iimpawu zeMathematika

Izibalo zibanzi kwaye, ngaphaya koko, zinomdla. Kuyenzeka ukuba kufumaneke kwisimboli ngasinye isimboli esahlula kwesinye, kwintsebenzo nganye enokwenziwa kukho umqondiso ohamba nayo.

Yinto eqhelekileyo ukuba sive ukudideka xa siphambi kwemithambo ethile kwaye asazi ukuba masibeke wuphi umfuziselo. Kodwa ungakhathazeki, kuba siza kuchaza ukuba yintoni yonke le nto malunga neempawu zemathematics kwaye kutheni zibaluleke kwaye ziyimfuneko.

Inkcazo

Iimpawu zeMathematics zizo zonke ezo mpawu kunye nemifanekiso emele ukusebenza okanye ubudlelwane phakathi kwexabiso lamanani elinye nelinye. Ezi zinto zisekwe ngeendlela ezahlukeneyo kuxhomekeke kuhlobo lomthambo oza kwenziwa.

Iimpawu zeMathematika kunye nentsingiselo yazo

Zininzi, kodwa siza kubala nje ezimbalwa ze iisimboli zemathematika kunye nentsingiselo yazo:

Isishwankathelo (+)

Olu luphawu lokongeza. Isetyenziselwa ukongeza amanani. Umzekelo: 10 + 10 = 20.

Ukuthabatha (-)

Lo ngumqondiso wokuthabatha. Isetyenziselwa ukuthabatha amanani. Umzekelo: 20-10 = 10.

Ukuphindaphinda (*)

Olu luphawu olusetyenziswa ekuphindaphindeni. Le miqondiso ikwasetyenziswa: (x), (·). Umzekelo: 5 x 8 = 40.

Icandelo (÷) 

Lo ngumqondiso osetyenziselwa ukwahlula amanani. Lo mqondiso uyasetyenziswa: (/). Umzekelo: 4 ÷ 2 = 2.

Ukuba ufuna ukufunda kakuhle malunga Ulwahlulo, ke eli khonkco lelakho, uya kuyazi yonke into ukuze ukwazi ukwenza imisebenzi yakho ngendlela elula.

Ngaphezu kwe (>) 

Olu phawu lusetyenziselwa ukumela ukuba inani lamanani kwicala lasekhohlo inkulu kune elandelayo Umzekelo: 30>25: (30 mkhulu kuno-25)

Incinci kune (<) 

Olu phawu lusetyenziselwa ukumela ukuba inani lamanani kwicala lasekhohlo lingaphantsi kwenani elilandelayo. Umzekelo: 80<100: (80 ingaphantsi kwe-100).

Ilingana no (=)

Olu phawu lusetyenziselwa ukumela ukulingana phakathi kwamaxabiso amabini. Umzekelo: 5 + 3 = 8 no-3 + 5 = 8. (Omabini la mabinzana anika iziphumo ezifanayo nokuba isikhundla sabo siyahluka).

Iimpawu zezibalo-1

Kukhulu kunokuba okanye kulingana (≥) 

Olu phawu lusetyenziselwa ukumisela ukuba ixabiso elithile lingaphezulu okanye lilingana nelinye. Umzekelo: x1. (X mkhulu kuno okanye ulingana no-1).

Ngaphantsi okanye ulingana no (≤) 

Olu phawu lusetyenziselwa ukumisela ukuba ixabiso elithile lingaphantsi okanye lilingana nelinye. Umzekelo: kunye1. (Y ungaphantsi okanye ulingana no-1).

Ayilingani no (≠) 

Olu phawu lusebenza ekuchongeni ukuba amabinzana amabini ahlukile. Umzekelo: 1720 (17 yahlukile ku 20).

I-Parentheses (), izibiyeli ezikwisikwere [], izihlangu zezilima ezidityanisiweyo, izandla ezililungisa

Ezi mpawu zisetyenziselwa ukwahlula phakathi kwemisebenzi eyahlukeneyo eqokelelwe kumsebenzi omnye Kubalulekile ukuba uqaphele ukuba xa uzifumanisa unolu hlobo lomsebenzi, kufuneka usombulule inkqubo ehambelanayo phakathi kwabazali, emva koko kwizibiyeli kwaye, ekugqibeleni, ezo zingaphakathi kwezitshixo.

Ejemplo: -3(4-6)-2{5[3-5(-7+5)-3]}.

Ipesenti (%)

Olu phawu lusetyenziselwa ukumela ubungakanani "x" kumlinganiselo wekhulu leeyunithi. Umzekelo: i-10% imele iiyunithi ezili-10 ezili-100. Omnye umzekelo: 25% ka-1000 = 250.

Iingcambu ezimbhoxo (√) 

Olu phawu lusetyenziselwa ukumela umsebenzi apho ingcambu yesikwere senani "x" kufuneka ifunyenwe. Oko kukuthi, ukuba sinexabiso "Y", kunye nengcambu yesikwere sifuna ukufumana ixabiso "X", xa liphindwe kabini sifumana ixabiso "Y" kwakhona. Umzekelo: Ingcambu ka-36 ingu-6². (6 kumandla e-2, alingana no-36).

Okungapheliyo (∞) 

Lo mfuziselo usetyenziselwa ukufumanisa ukuba "X" ixabiso alinamida kwaye ngu infinito. Umzekelo: Kwinqwelomoya yaseCartesian i-abscissa (x) okanye i-axine (y) i-axes ayinasiphelo nokuba unexabiso kwiindawo zabo, nokuba zilungile okanye azilunganga.

Isigma sum ( )

Isetyenziswa kwimathematics ukusebenza kwezongezo ezinde kakhulu, kwaye ivumela ukuseka isiphumo sokugqibela kwisaziso senzululwazi, ukunqanda ukubeka i-ellipses. Umzekelo: Isibalo se-Xi apho ndithatha amaxabiso ukusuka ku-1 ukuya ku-n.

Pi (π) 

Ngumfuziselo owaziwayo, njengoko linani elingenangqondo kunye nokuhlala kubalulekile kwizifundo zezibalo. Ukuba sahlulahlula ubude besangqa ngobubanzi baso siya kufumana ipi.

Umzekelo: Ubude: 26'7 ubukhulu: 8'5 ilingana no: 3'141176…

Ukudibana kweeseti (∩) 

Ngumqondiso osetyenziselwa ukuseka intlanganiso kwaye kwangaxeshanye, ukusikwa kwemigca emibini, kule meko sithetha ngeeseti kubandakanya nezinto ezingaphakathi. Umzekelo: A C = {a, b, c, d, e, f}.

Umanyano weeseti (∪)

Kubekwe ukubonisa ukuba iiseti ezimbini okanye nangaphezulu xa zidityanisiwe zabelana ngezinto ezifanayo. Oko kukuthi, ukuba i-A iseti enye kwaye i-B yenye. Xa kusenziwa imisebenzi ebadibanisayo, u-A-B iiseti eziza kuba nezinto ezinazo u-A no-B.

Ithambeka (∇) 

Luphawu olusetyenziselwa ukuphawula umahluko wobukhulu, kuxhomekeke kumgama oqhutywayo.

Imisebenzi yeTrigonometric 

Zisetyenziselwa ukubala imigama nokuphakama. Banokuchazwa njengama-ratios amiselwe ukuchaza amacala kanxantathu ofanelekileyo, ngokweeengile zawo. Kukho imisebenzi emithandathu eyahlulwe ngezi mpawu zilandelayo:

  • Isifuba (sen sen= = ubudlelwane phakathi komlenze ochasene ne-angle kunye ne-hypotenuse.
  • Icosine (cos) ubudlelwane phakathi komlenze oqhotyoshelwe kwi-angle kunye ne-hypotenuse.
  • Tangent (tan) = ubudlelwane phakathi kwecala elikufutshane kunye necala eliphambene nxantathu elungileyo.
  • Ukhuseleko (sekile= = umyinge phakathi kwe-hypotenuse kunye nomlenze osondeleyo.
  • Imvelaphi (csc= = umlinganiselo phakathi kwe-hypotenuse kunye nomlenze ochaseneyo.
  • Ukudibanisa (u kubhalwa= = umyinge phakathi komlenze ochaseneyo kunye nomlenze ochaseneyo.

Umsebenzi (f) 

Yisimboli esetyenziselwa ukumela ubudlelwane obukhoyo phakathi kweeseti ezimbini ezinikiweyo (kuxhomekeke). Umzekelo: Misela i-X (siya kuyibiza: "idomeyini"), setha i-Y (siya kuyibiza ngokuba yi "codomain"). Singamisela ukuba nganye yezinto ze-X (i-domain), iya kuhambelana nento ekhethekileyo ye-Y (codiminio).

Ngaba zikhona ezinye iisimboli zemathematika?

Ngokuqinisekileyo ewe. Singafumana ezinye iisimboli ezininzi zezibalo ezisetyenziselwa imisebenzi entsonkothileyo kwaye ngokwengingqi yengcali apho kufuneka khona, kodwa sichaze kuphela ezona zisetyenziswayo nezaziwayo kwimithambo yemihla ngemihla. Kufuneka iqatshelwe ukuba zonke zinokubaluleka okufanayo, kuxhomekeke kwimisebenzi yazo kwezinye izinto.